Mister Exam

Other calculators


sin^3x/1+cos^2x

Integral of sin^3x/1+cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /   3             \   
 |  |sin (x)      2   |   
 |  |------- + cos (x)| dx
 |  \   1             /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\frac{\sin^{3}{\left(x \right)}}{1} + \cos^{2}{\left(x \right)}\right)\, dx$$
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 | /   3             \                          3              
 | |sin (x)      2   |          x            cos (x)   sin(2*x)
 | |------- + cos (x)| dx = C + - - cos(x) + ------- + --------
 | \   1             /          2               3         4    
 |                                                             
/                                                              
$${{{{\sin \left(2\,x\right)}\over{2}}+x}\over{2}}+{{\cos ^3x}\over{3 }}-\cos x$$
The graph
The answer [src]
                3                   
7            cos (1)   cos(1)*sin(1)
- - cos(1) + ------- + -------------
6               3            2      
$${{3\,\sin 2+4\,\cos ^31-12\,\cos 1+14}\over{12}}$$
=
=
                3                   
7            cos (1)   cos(1)*sin(1)
- - cos(1) + ------- + -------------
6               3            2      
$$- \cos{\left(1 \right)} + \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{7}{6}$$
Numerical answer [src]
0.906264919255279
0.906264919255279
The graph
Integral of sin^3x/1+cos^2x dx

    Use the examples entering the upper and lower limits of integration.