Mister Exam

Other calculators

Integral of (sin(9x)-(x^(-3/4))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /            1  \   
 |  |sin(9*x) - ----| dx
 |  |            3/4|   
 |  \           x   /   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(\sin{\left(9 x \right)} - \frac{1}{x^{\frac{3}{4}}}\right)\, dx$$
Integral(sin(9*x) - 1/x^(3/4), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                              
 | /            1  \            4 ___   cos(9*x)
 | |sin(9*x) - ----| dx = C - 4*\/ x  - --------
 | |            3/4|                       9    
 | \           x   /                            
 |                                              
/                                               
$$\int \left(\sin{\left(9 x \right)} - \frac{1}{x^{\frac{3}{4}}}\right)\, dx = C - 4 \sqrt[4]{x} - \frac{\cos{\left(9 x \right)}}{9}$$
The graph
The answer [src]
  35   cos(9)
- -- - ------
  9      9   
$$- \frac{35}{9} - \frac{\cos{\left(9 \right)}}{9}$$
=
=
  35   cos(9)
- -- - ------
  9      9   
$$- \frac{35}{9} - \frac{\cos{\left(9 \right)}}{9}$$
-35/9 - cos(9)/9
Numerical answer [src]
-3.78758696103453
-3.78758696103453

    Use the examples entering the upper and lower limits of integration.