1 / | | sin(7*x)*x*cos(2*x) dx | / 0
Integral(sin(7*x)*(x*cos(2*x)), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of sine is negative cosine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of sine is negative cosine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of is when :
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The result is:
Now evaluate the sub-integral.
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 3 7 9 5 / 5 9 3 \ | 154*sin (x) 32*sin (x) 7*sin(x) 128*sin (x) 224*sin (x) | 7 128*cos (x) 128*cos (x) 26*cos (x)| | sin(7*x)*x*cos(2*x) dx = C - ----------- - ---------- + -------- + ----------- + ----------- + x*|-cos(x) + 32*cos (x) - ----------- - ----------- + ----------| | 135 9 45 81 75 \ 5 9 3 / /
28*cos(7)*sin(2) 7*cos(2)*cos(7) 2*sin(2)*sin(7) 53*cos(2)*sin(7)
- ---------------- - --------------- - --------------- + ----------------
2025 45 45 2025
=
28*cos(7)*sin(2) 7*cos(2)*cos(7) 2*sin(2)*sin(7) 53*cos(2)*sin(7)
- ---------------- - --------------- - --------------- + ----------------
2025 45 45 2025
-28*cos(7)*sin(2)/2025 - 7*cos(2)*cos(7)/45 - 2*sin(2)*sin(7)/45 + 53*cos(2)*sin(7)/2025
Use the examples entering the upper and lower limits of integration.