Mister Exam

Other calculators


sin⁶(x)*cos(x)

Integral of sin⁶(x)*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     6             
 |  sin (x)*cos(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx$$
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            7   
 |    6                    sin (x)
 | sin (x)*cos(x) dx = C + -------
 |                            7   
/                                 
$${{\sin ^7x}\over{7}}$$
The graph
The answer [src]
   7   
sin (1)
-------
   7   
$${{\sin ^71}\over{7}}$$
=
=
   7   
sin (1)
-------
   7   
$$\frac{\sin^{7}{\left(1 \right)}}{7}$$
Numerical answer [src]
0.0426752405751304
0.0426752405751304
The graph
Integral of sin⁶(x)*cos(x) dx

    Use the examples entering the upper and lower limits of integration.