Integral of sin(4x+5) dx
The solution
Detail solution
-
Let u=4x+5.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x+5)
-
Now simplify:
−4cos(4x+5)
-
Add the constant of integration:
−4cos(4x+5)+constant
The answer is:
−4cos(4x+5)+constant
The answer (Indefinite)
[src]
/
| cos(4*x + 5)
| sin(4*x + 5) dx = C - ------------
| 4
/
∫sin(4x+5)dx=C−4cos(4x+5)
The graph
cos(45) cos(9)
- ------- + ------
4 4
4cos(9)−4cos(45)
=
cos(45) cos(9)
- ------- + ------
4 4
4cos(9)−4cos(45)
Use the examples entering the upper and lower limits of integration.