Mister Exam

Other calculators

Integral of sin(4x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 10                
  /                
 |                 
 |  sin(4*x + 5) dx
 |                 
/                  
1                  
$$\int\limits_{1}^{10} \sin{\left(4 x + 5 \right)}\, dx$$
Integral(sin(4*x + 5), (x, 1, 10))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       cos(4*x + 5)
 | sin(4*x + 5) dx = C - ------------
 |                            4      
/                                    
$$\int \sin{\left(4 x + 5 \right)}\, dx = C - \frac{\cos{\left(4 x + 5 \right)}}{4}$$
The graph
The answer [src]
  cos(45)   cos(9)
- ------- + ------
     4        4   
$$\frac{\cos{\left(9 \right)}}{4} - \frac{\cos{\left(45 \right)}}{4}$$
=
=
  cos(45)   cos(9)
- ------- + ------
     4        4   
$$\frac{\cos{\left(9 \right)}}{4} - \frac{\cos{\left(45 \right)}}{4}$$
-cos(45)/4 + cos(9)/4
Numerical answer [src]
-0.359113062675602
-0.359113062675602

    Use the examples entering the upper and lower limits of integration.