Mister Exam

Other calculators

Integral of sin(4x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 10                
  /                
 |                 
 |  sin(4*x + 5) dx
 |                 
/                  
1                  
110sin(4x+5)dx\int\limits_{1}^{10} \sin{\left(4 x + 5 \right)}\, dx
Integral(sin(4*x + 5), (x, 1, 10))
Detail solution
  1. Let u=4x+5u = 4 x + 5.

    Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

    sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

    Now substitute uu back in:

    cos(4x+5)4- \frac{\cos{\left(4 x + 5 \right)}}{4}

  2. Now simplify:

    cos(4x+5)4- \frac{\cos{\left(4 x + 5 \right)}}{4}

  3. Add the constant of integration:

    cos(4x+5)4+constant- \frac{\cos{\left(4 x + 5 \right)}}{4}+ \mathrm{constant}


The answer is:

cos(4x+5)4+constant- \frac{\cos{\left(4 x + 5 \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       cos(4*x + 5)
 | sin(4*x + 5) dx = C - ------------
 |                            4      
/                                    
sin(4x+5)dx=Ccos(4x+5)4\int \sin{\left(4 x + 5 \right)}\, dx = C - \frac{\cos{\left(4 x + 5 \right)}}{4}
The graph
1.02.03.04.05.06.07.08.09.010.02-2
The answer [src]
  cos(45)   cos(9)
- ------- + ------
     4        4   
cos(9)4cos(45)4\frac{\cos{\left(9 \right)}}{4} - \frac{\cos{\left(45 \right)}}{4}
=
=
  cos(45)   cos(9)
- ------- + ------
     4        4   
cos(9)4cos(45)4\frac{\cos{\left(9 \right)}}{4} - \frac{\cos{\left(45 \right)}}{4}
-cos(45)/4 + cos(9)/4
Numerical answer [src]
-0.359113062675602
-0.359113062675602

    Use the examples entering the upper and lower limits of integration.