Mister Exam

Integral of sin(4x)cos(4x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                       
  /                       
 |                        
 |  sin(4*x)*cos(4*x)*1 dx
 |                        
/                         
0                         
00sin(4x)cos(4x)1dx\int\limits_{0}^{0} \sin{\left(4 x \right)} \cos{\left(4 x \right)} 1\, dx
Integral(sin(4*x)*cos(4*x)*1, (x, 0, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(4x)u = \sin{\left(4 x \right)}.

      Then let du=4cos(4x)dxdu = 4 \cos{\left(4 x \right)} dx and substitute du4\frac{du}{4}:

      u16du\int \frac{u}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u4du=udu4\int \frac{u}{4}\, du = \frac{\int u\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        So, the result is: u28\frac{u^{2}}{8}

      Now substitute uu back in:

      sin2(4x)8\frac{\sin^{2}{\left(4 x \right)}}{8}

    Method #2

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)cos(u)16du\int \frac{\sin{\left(u \right)} \cos{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)cos(u)4du=sin(u)cos(u)du4\int \frac{\sin{\left(u \right)} \cos{\left(u \right)}}{4}\, du = \frac{\int \sin{\left(u \right)} \cos{\left(u \right)}\, du}{4}

        1. Let u=cos(u)u = \cos{\left(u \right)}.

          Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

          udu\int u\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u)du=udu\int \left(- u\right)\, du = - \int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u22- \frac{u^{2}}{2}

          Now substitute uu back in:

          cos2(u)2- \frac{\cos^{2}{\left(u \right)}}{2}

        So, the result is: cos2(u)8- \frac{\cos^{2}{\left(u \right)}}{8}

      Now substitute uu back in:

      cos2(4x)8- \frac{\cos^{2}{\left(4 x \right)}}{8}

    Method #3

    1. Let u=cos(4x)u = \cos{\left(4 x \right)}.

      Then let du=4sin(4x)dxdu = - 4 \sin{\left(4 x \right)} dx and substitute du4- \frac{du}{4}:

      u16du\int \frac{u}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u4)du=udu4\int \left(- \frac{u}{4}\right)\, du = - \frac{\int u\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        So, the result is: u28- \frac{u^{2}}{8}

      Now substitute uu back in:

      cos2(4x)8- \frac{\cos^{2}{\left(4 x \right)}}{8}

  2. Add the constant of integration:

    sin2(4x)8+constant\frac{\sin^{2}{\left(4 x \right)}}{8}+ \mathrm{constant}


The answer is:

sin2(4x)8+constant\frac{\sin^{2}{\left(4 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                2     
 |                              sin (4*x)
 | sin(4*x)*cos(4*x)*1 dx = C + ---------
 |                                  8    
/                                        
cos2(4x)8-{{\cos ^2\left(4\,x\right)}\over{8}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
0
00
=
=
0
00
Numerical answer [src]
0.0
0.0
The graph
Integral of sin(4x)cos(4x)dx dx

    Use the examples entering the upper and lower limits of integration.