Mister Exam

Integral of sin4xcos2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(4*x)*cos(2*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(4 x \right)} \cos{\left(2 x \right)}\, dx$$
Integral(sin(4*x)*cos(2*x), (x, 0, 1))
The graph
The answer [src]
1   cos(2)*cos(4)   sin(2)*sin(4)
- - ------------- - -------------
3         3               6      
$$- \frac{\cos{\left(2 \right)} \cos{\left(4 \right)}}{3} - \frac{\sin{\left(2 \right)} \sin{\left(4 \right)}}{6} + \frac{1}{3}$$
=
=
1   cos(2)*cos(4)   sin(2)*sin(4)
- - ------------- - -------------
3         3               6      
$$- \frac{\cos{\left(2 \right)} \cos{\left(4 \right)}}{3} - \frac{\sin{\left(2 \right)} \sin{\left(4 \right)}}{6} + \frac{1}{3}$$
1/3 - cos(2)*cos(4)/3 - sin(2)*sin(4)/6
Numerical answer [src]
0.357355851915922
0.357355851915922
The graph
Integral of sin4xcos2xdx dx

    Use the examples entering the upper and lower limits of integration.