Mister Exam

Integral of sin3ycosydy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(3*y)*cos(y)*1 dy
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(3 y \right)} \cos{\left(y \right)} 1\, dy$$
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            1. The integral of a constant is the constant times the variable of integration:

            The result is:

          Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          2   
 |                               4      3*cos (y)
 | sin(3*y)*cos(y)*1 dy = C - sin (y) - ---------
 |                                          2    
/                                                
$$-{{\cos \left(4\,y\right)}\over{8}}-{{\cos \left(2\,y\right)}\over{ 4}}$$
The graph
The answer [src]
3   3*cos(1)*cos(3)   sin(1)*sin(3)
- - --------------- - -------------
8          8                8      
$${{3}\over{8}}-{{\cos 4+2\,\cos 2}\over{8}}$$
=
=
3   3*cos(1)*cos(3)   sin(1)*sin(3)
- - --------------- - -------------
8          8                8      
$$- \frac{\sin{\left(1 \right)} \sin{\left(3 \right)}}{8} - \frac{3 \cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{3}{8}$$
Numerical answer [src]
0.560742161744737
0.560742161744737
The graph
Integral of sin3ycosydy dx

    Use the examples entering the upper and lower limits of integration.