Mister Exam

Other calculators

Integral of sin(3x)sinxsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  sin(3*x)*sin(x)*sin(x) dx
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \sin{\left(x \right)} \sin{\left(3 x \right)} \sin{\left(x \right)}\, dx$$
Integral((sin(3*x)*sin(x))*sin(x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of sine is negative cosine:

          The result is:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of sine is negative cosine:

          The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     3           5            
 |                                 5*cos (x)   4*cos (x)         
 | sin(3*x)*sin(x)*sin(x) dx = C - --------- + --------- + cos(x)
 |                                     3           5             
/                                                                
$$\int \sin{\left(x \right)} \sin{\left(3 x \right)} \sin{\left(x \right)}\, dx = C + \frac{4 \cos^{5}{\left(x \right)}}{5} - \frac{5 \cos^{3}{\left(x \right)}}{3} + \cos{\left(x \right)}$$
The graph
The answer [src]
            2                  2                                   
  2    7*sin (1)*cos(3)   2*cos (1)*cos(3)   2*cos(1)*sin(1)*sin(3)
- -- - ---------------- + ---------------- + ----------------------
  15          15                 15                    5           
$$- \frac{2}{15} + \frac{2 \cos^{2}{\left(1 \right)} \cos{\left(3 \right)}}{15} + \frac{2 \sin{\left(1 \right)} \sin{\left(3 \right)} \cos{\left(1 \right)}}{5} - \frac{7 \sin^{2}{\left(1 \right)} \cos{\left(3 \right)}}{15}$$
=
=
            2                  2                                   
  2    7*sin (1)*cos(3)   2*cos (1)*cos(3)   2*cos(1)*sin(1)*sin(3)
- -- - ---------------- + ---------------- + ----------------------
  15          15                 15                    5           
$$- \frac{2}{15} + \frac{2 \cos^{2}{\left(1 \right)} \cos{\left(3 \right)}}{15} + \frac{2 \sin{\left(1 \right)} \sin{\left(3 \right)} \cos{\left(1 \right)}}{5} - \frac{7 \sin^{2}{\left(1 \right)} \cos{\left(3 \right)}}{15}$$
-2/15 - 7*sin(1)^2*cos(3)/15 + 2*cos(1)^2*cos(3)/15 + 2*cos(1)*sin(1)*sin(3)/5
Numerical answer [src]
0.18092410184027
0.18092410184027

    Use the examples entering the upper and lower limits of integration.