Mister Exam

Integral of sin3x-cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  (sin(3*x) - cos(x)) dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\sin{\left(3 x \right)} - \cos{\left(x \right)}\right)\, dx$$
Integral(sin(3*x) - cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                       cos(3*x)
 | (sin(3*x) - cos(x)) dx = C - sin(x) - --------
 |                                          3    
/                                                
$$\int \left(\sin{\left(3 x \right)} - \cos{\left(x \right)}\right)\, dx = C - \sin{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}$$
The graph
The answer [src]
1            cos(3)
- - sin(1) - ------
3              3   
$$- \sin{\left(1 \right)} - \frac{\cos{\left(3 \right)}}{3} + \frac{1}{3}$$
=
=
1            cos(3)
- - sin(1) - ------
3              3   
$$- \sin{\left(1 \right)} - \frac{\cos{\left(3 \right)}}{3} + \frac{1}{3}$$
1/3 - sin(1) - cos(3)/3
Numerical answer [src]
-0.178140152607748
-0.178140152607748
The graph
Integral of sin3x-cosx dx

    Use the examples entering the upper and lower limits of integration.