1 / | | sin(2*x)*sin(8*x) dx | / 0
Integral(sin(2*x)*sin(8*x), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of cosine is sine:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
So, the result is:
The result is:
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 5 3 | 4*sin (2*x) 2*sin (2*x) | sin(2*x)*sin(8*x) dx = C - ----------- + ----------- | 5 3 /
2*cos(8)*sin(2) cos(2)*sin(8) - --------------- + ------------- 15 30
=
2*cos(8)*sin(2) cos(2)*sin(8) - --------------- + ------------- 15 30
Use the examples entering the upper and lower limits of integration.