Mister Exam

Integral of (sin2x+cos4x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157                        
 ---                        
 100                        
  /                         
 |                          
 |  (sin(2*x) + cos(4*x)) dx
 |                          
/                           
0                           
$$\int\limits_{0}^{\frac{157}{100}} \left(\sin{\left(2 x \right)} + \cos{\left(4 x \right)}\right)\, dx$$
Integral(sin(2*x) + cos(4*x), (x, 0, 157/100))
Detail solution
  1. Integrate term-by-term:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Method #2

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          Method #2

          1. Let .

            Then let and substitute :

            1. The integral of is when :

            Now substitute back in:

        So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                cos(2*x)   sin(4*x)
 | (sin(2*x) + cos(4*x)) dx = C - -------- + --------
 |                                   2          4    
/                                                    
$$\int \left(\sin{\left(2 x \right)} + \cos{\left(4 x \right)}\right)\, dx = C + \frac{\sin{\left(4 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{2}$$
The graph
The answer [src]
       /157\      /157\
    cos|---|   sin|---|
1      \ 50/      \ 25/
- - -------- + --------
2      2          4    
$$\frac{\sin{\left(\frac{157}{25} \right)}}{4} - \frac{\cos{\left(\frac{157}{50} \right)}}{2} + \frac{1}{2}$$
=
=
       /157\      /157\
    cos|---|   sin|---|
1      \ 50/      \ 25/
- - -------- + --------
2      2          4    
$$\frac{\sin{\left(\frac{157}{25} \right)}}{4} - \frac{\cos{\left(\frac{157}{50} \right)}}{2} + \frac{1}{2}$$
1/2 - cos(157/50)/2 + sin(157/25)/4
Numerical answer [src]
0.999203040415485
0.999203040415485

    Use the examples entering the upper and lower limits of integration.