Mister Exam

Integral of sin²x*cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
 --                  
 2                   
  /                  
 |                   
 |     2             
 |  sin (x)*cos(x) dx
 |                   
/                    
pi                   
--                   
6                    
$$\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx$$
Integral(sin(x)^2*cos(x), (x, pi/6, pi/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            3   
 |    2                    sin (x)
 | sin (x)*cos(x) dx = C + -------
 |                            3   
/                                 
$$\int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = C + \frac{\sin^{3}{\left(x \right)}}{3}$$
The graph
The answer [src]
7/24
$$\frac{7}{24}$$
=
=
7/24
$$\frac{7}{24}$$
7/24
Numerical answer [src]
0.291666666666667
0.291666666666667

    Use the examples entering the upper and lower limits of integration.