Mister Exam

Other calculators


sin(2x)e^(cos(x))

Integral of sin(2x)e^(cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |            cos(x)   
 |  sin(2*x)*E       dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{\cos{\left(x \right)}} \sin{\left(2 x \right)}\, dx$$
Integral(sin(2*x)*E^cos(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |           cos(x)             cos(x)             cos(x)
 | sin(2*x)*E       dx = C + 2*e       - 2*cos(x)*e      
 |                                                       
/                                                        
$$\int e^{\cos{\left(x \right)}} \sin{\left(2 x \right)}\, dx = C - 2 e^{\cos{\left(x \right)}} \cos{\left(x \right)} + 2 e^{\cos{\left(x \right)}}$$
The graph
The answer [src]
   cos(1)             cos(1)
2*e       - 2*cos(1)*e      
$$- 2 e^{\cos{\left(1 \right)}} \cos{\left(1 \right)} + 2 e^{\cos{\left(1 \right)}}$$
=
=
   cos(1)             cos(1)
2*e       - 2*cos(1)*e      
$$- 2 e^{\cos{\left(1 \right)}} \cos{\left(1 \right)} + 2 e^{\cos{\left(1 \right)}}$$
2*exp(cos(1)) - 2*cos(1)*exp(cos(1))
Numerical answer [src]
1.57816581200142
1.57816581200142
The graph
Integral of sin(2x)e^(cos(x)) dx

    Use the examples entering the upper and lower limits of integration.