Mister Exam

Other calculators

Integral of sin2x/sqrt1+sin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  /sin(2*x)      2   \   
 |  |-------- + sin (x)| dx
 |  |   ___            |   
 |  \ \/ 1             /   
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \left(\sin^{2}{\left(x \right)} + \frac{\sin{\left(2 x \right)}}{\sqrt{1}}\right)\, dx$$
Integral(sin(2*x)/sqrt(1) + sin(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     
 |                                                      
 | /sin(2*x)      2   \          x   cos(2*x)   sin(2*x)
 | |-------- + sin (x)| dx = C + - - -------- - --------
 | |   ___            |          2      2          4    
 | \ \/ 1             /                                 
 |                                                      
/                                                       
$$\int \left(\sin^{2}{\left(x \right)} + \frac{\sin{\left(2 x \right)}}{\sqrt{1}}\right)\, dx = C + \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{2}$$
The graph
The answer [src]
    cos(2)   cos(1)*sin(1)
1 - ------ - -------------
      2            2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} - \frac{\cos{\left(2 \right)}}{2} + 1$$
=
=
    cos(2)   cos(1)*sin(1)
1 - ------ - -------------
      2            2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} - \frac{\cos{\left(2 \right)}}{2} + 1$$
1 - cos(2)/2 - cos(1)*sin(1)/2
Numerical answer [src]
0.980749061567151
0.980749061567151

    Use the examples entering the upper and lower limits of integration.