Mister Exam

Other calculators


sin(2x)cos(x)+0.5x

Integral of sin(2x)cos(x)+0.5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                         
  /                         
 |                          
 |  /                  x\   
 |  |sin(2*x)*cos(x) + -| dx
 |  \                  2/   
 |                          
/                           
0                           
$$\int\limits_{0}^{4} \left(\frac{x}{2} + \sin{\left(2 x \right)} \cos{\left(x \right)}\right)\, dx$$
Integral(sin(2*x)*cos(x) + x/2, (x, 0, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. There are multiple ways to do this integral.

      Method #1

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Method #2

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                     3       2
 | /                  x\          2*cos (x)   x 
 | |sin(2*x)*cos(x) + -| dx = C - --------- + --
 | \                  2/              3       4 
 |                                              
/                                               
$$-{{\cos \left(3\,x\right)}\over{6}}-{{\cos x}\over{2}}+{{x^2}\over{ 4}}$$
The graph
The answer [src]
14   2*cos(4)*cos(8)   sin(4)*sin(8)
-- - --------------- - -------------
3           3                3      
$$-{{\cos 12+3\,\cos 4-28}\over{6}}$$
=
=
14   2*cos(4)*cos(8)   sin(4)*sin(8)
-- - --------------- - -------------
3           3                3      
$$- \frac{2 \cos{\left(4 \right)} \cos{\left(8 \right)}}{3} - \frac{\sin{\left(4 \right)} \sin{\left(8 \right)}}{3} + \frac{14}{3}$$
Numerical answer [src]
4.85284615064306
4.85284615064306
The graph
Integral of sin(2x)cos(x)+0.5x dx

    Use the examples entering the upper and lower limits of integration.