Mister Exam

Integral of sin²(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5*l            
 ---            
  6             
  /             
 |              
 |     2        
 |  sin (5*x) dx
 |              
/               
l               
-               
6               
$$\int\limits_{\frac{l}{6}}^{\frac{5 l}{6}} \sin^{2}{\left(5 x \right)}\, dx$$
Integral(sin(5*x)^2, (x, l/6, 5*l/6))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |    2               x   sin(10*x)
 | sin (5*x) dx = C + - - ---------
 |                    2       20   
/                                  
$$\int \sin^{2}{\left(5 x \right)}\, dx = C + \frac{x}{2} - \frac{\sin{\left(10 x \right)}}{20}$$
The answer [src]
       /25*l\    /25*l\      /5*l\    /5*l\
    cos|----|*sin|----|   cos|---|*sin|---|
l      \ 6  /    \ 6  /      \ 6 /    \ 6 /
- - ------------------- + -----------------
3            10                   10       
$$\frac{l}{3} + \frac{\sin{\left(\frac{5 l}{6} \right)} \cos{\left(\frac{5 l}{6} \right)}}{10} - \frac{\sin{\left(\frac{25 l}{6} \right)} \cos{\left(\frac{25 l}{6} \right)}}{10}$$
=
=
       /25*l\    /25*l\      /5*l\    /5*l\
    cos|----|*sin|----|   cos|---|*sin|---|
l      \ 6  /    \ 6  /      \ 6 /    \ 6 /
- - ------------------- + -----------------
3            10                   10       
$$\frac{l}{3} + \frac{\sin{\left(\frac{5 l}{6} \right)} \cos{\left(\frac{5 l}{6} \right)}}{10} - \frac{\sin{\left(\frac{25 l}{6} \right)} \cos{\left(\frac{25 l}{6} \right)}}{10}$$
l/3 - cos(25*l/6)*sin(25*l/6)/10 + cos(5*l/6)*sin(5*l/6)/10

    Use the examples entering the upper and lower limits of integration.