5*l --- 6 / | | 2 | sin (5*x) dx | / l - 6
Integral(sin(5*x)^2, (x, l/6, 5*l/6))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | 2 x sin(10*x) | sin (5*x) dx = C + - - --------- | 2 20 /
/25*l\ /25*l\ /5*l\ /5*l\
cos|----|*sin|----| cos|---|*sin|---|
l \ 6 / \ 6 / \ 6 / \ 6 /
- - ------------------- + -----------------
3 10 10
=
/25*l\ /25*l\ /5*l\ /5*l\
cos|----|*sin|----| cos|---|*sin|---|
l \ 6 / \ 6 / \ 6 / \ 6 /
- - ------------------- + -----------------
3 10 10
l/3 - cos(25*l/6)*sin(25*l/6)/10 + cos(5*l/6)*sin(5*l/6)/10
Use the examples entering the upper and lower limits of integration.