Mister Exam

Other calculators

Integral of 7^cos*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   cos(x)          
 |  7      *sin(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} 7^{\cos{\left(x \right)}} \sin{\left(x \right)}\, dx$$
Integral(7^cos(x)*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                          cos(x)
 |  cos(x)                 7      
 | 7      *sin(x) dx = C - -------
 |                          log(7)
/                                 
$$\int 7^{\cos{\left(x \right)}} \sin{\left(x \right)}\, dx = - \frac{7^{\cos{\left(x \right)}}}{\log{\left(7 \right)}} + C$$
The graph
The answer [src]
          cos(1)
  7      7      
------ - -------
log(7)    log(7)
$$- \frac{7^{\cos{\left(1 \right)}}}{\log{\left(7 \right)}} + \frac{7}{\log{\left(7 \right)}}$$
=
=
          cos(1)
  7      7      
------ - -------
log(7)    log(7)
$$- \frac{7^{\cos{\left(1 \right)}}}{\log{\left(7 \right)}} + \frac{7}{\log{\left(7 \right)}}$$
7/log(7) - 7^cos(1)/log(7)
Numerical answer [src]
2.12671861830105
2.12671861830105

    Use the examples entering the upper and lower limits of integration.