Mister Exam

Other calculators

Integral of [(7+2x+8x^2)*exp(2x)] dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  /             2\  2*x   
 |  \7 + 2*x + 8*x /*e    dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \left(8 x^{2} + \left(2 x + 7\right)\right) e^{2 x}\, dx$$
Integral((7 + 2*x + 8*x^2)*exp(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #4

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 | /             2\  2*x             2*x        2*x      2  2*x
 | \7 + 2*x + 8*x /*e    dx = C + 5*e    - 3*x*e    + 4*x *e   
 |                                                             
/                                                              
$$\int \left(8 x^{2} + \left(2 x + 7\right)\right) e^{2 x}\, dx = C + 4 x^{2} e^{2 x} - 3 x e^{2 x} + 5 e^{2 x}$$
The graph
The answer [src]
        2
-5 + 6*e 
$$-5 + 6 e^{2}$$
=
=
        2
-5 + 6*e 
$$-5 + 6 e^{2}$$
-5 + 6*exp(2)
Numerical answer [src]
39.3343365935839
39.3343365935839

    Use the examples entering the upper and lower limits of integration.