Mister Exam

Other calculators

Integral of senx/(3senx+4cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |         sin(x)         
 |  ------------------- dx
 |  3*sin(x) + 4*cos(x)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}}\, dx$$
Integral(sin(x)/(3*sin(x) + 4*cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                             
 |                                                              
 |        sin(x)                4*log(3*sin(x) + 4*cos(x))   3*x
 | ------------------- dx = C - -------------------------- + ---
 | 3*sin(x) + 4*cos(x)                      25                25
 |                                                              
/                                                               
$$\int \frac{\sin{\left(x \right)}}{3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}}\, dx = C + \frac{3 x}{25} - \frac{4 \log{\left(3 \sin{\left(x \right)} + 4 \cos{\left(x \right)} \right)}}{25}$$
The graph
The answer [src]
3    4*log(3*sin(1) + 4*cos(1))   4*log(4)
-- - -------------------------- + --------
25               25                  25   
$$- \frac{4 \log{\left(4 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)} \right)}}{25} + \frac{3}{25} + \frac{4 \log{\left(4 \right)}}{25}$$
=
=
3    4*log(3*sin(1) + 4*cos(1))   4*log(4)
-- - -------------------------- + --------
25               25                  25   
$$- \frac{4 \log{\left(4 \cos{\left(1 \right)} + 3 \sin{\left(1 \right)} \right)}}{25} + \frac{3}{25} + \frac{4 \log{\left(4 \right)}}{25}$$
3/25 - 4*log(3*sin(1) + 4*cos(1))/25 + 4*log(4)/25
Numerical answer [src]
0.0946873043415358
0.0946873043415358

    Use the examples entering the upper and lower limits of integration.