Mister Exam

Integral of sen(x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  sin(x)   
 |  ------ dx
 |    x      
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{x}\, dx$$
Integral(sin(x)/x, (x, 0, 1))
Detail solution

    SiRule(a=1, b=0, context=sin(x)/x, symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                      
 | sin(x)               
 | ------ dx = C + Si(x)
 |   x                  
 |                      
/                       
$$\int \frac{\sin{\left(x \right)}}{x}\, dx = C + \operatorname{Si}{\left(x \right)}$$
The graph
The answer [src]
Si(1)
$$\operatorname{Si}{\left(1 \right)}$$
=
=
Si(1)
$$\operatorname{Si}{\left(1 \right)}$$
Si(1)
Numerical answer [src]
0.946083070367183
0.946083070367183
The graph
Integral of sen(x)/x dx

    Use the examples entering the upper and lower limits of integration.