Mister Exam

Other calculators

Integral of sec(x)tan^5(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |            5      
 |  sec(x)*tan (x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \tan^{5}{\left(x \right)} \sec{\left(x \right)}\, dx$$
Integral(sec(x)*tan(x)^5, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of secant times tangent is secant:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of secant times tangent is secant:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                              3         5            
 |           5             2*sec (x)   sec (x)         
 | sec(x)*tan (x) dx = C - --------- + ------- + sec(x)
 |                             3          5            
/                                                      
$$\int \tan^{5}{\left(x \right)} \sec{\left(x \right)}\, dx = C + \frac{\sec^{5}{\left(x \right)}}{5} - \frac{2 \sec^{3}{\left(x \right)}}{3} + \sec{\left(x \right)}$$
The graph
The answer [src]
                 2            4   
  8    3 - 10*cos (1) + 15*cos (1)
- -- + ---------------------------
  15                  5           
                15*cos (1)        
$$- \frac{8}{15} + \frac{- 10 \cos^{2}{\left(1 \right)} + 15 \cos^{4}{\left(1 \right)} + 3}{15 \cos^{5}{\left(1 \right)}}$$
=
=
                 2            4   
  8    3 - 10*cos (1) + 15*cos (1)
- -- + ---------------------------
  15                  5           
                15*cos (1)        
$$- \frac{8}{15} + \frac{- 10 \cos^{2}{\left(1 \right)} + 15 \cos^{4}{\left(1 \right)} + 3}{15 \cos^{5}{\left(1 \right)}}$$
-8/15 + (3 - 10*cos(1)^2 + 15*cos(1)^4)/(15*cos(1)^5)
Numerical answer [src]
1.43437365760108
1.43437365760108

    Use the examples entering the upper and lower limits of integration.