Mister Exam

Other calculators


sec^5(x)

Integral of sec^5(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     5      
 |  sec (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \sec^{5}{\left(x \right)}\, dx$$
Integral(sec(x)^5, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                    
 |                                                                              3      
 |    5             3*log(-1 + sin(x))   3*log(1 + sin(x))     -5*sin(x) + 3*sin (x)   
 | sec (x) dx = C - ------------------ + ----------------- - --------------------------
 |                          16                   16                    2           4   
/                                                            8 - 16*sin (x) + 8*sin (x)
$${{3\,\log \left(\sin x+1\right)}\over{16}}-{{3\,\log \left(\sin x-1 \right)}\over{16}}-{{3\,\sin ^3x-5\,\sin x}\over{8\,\sin ^4x-16\, \sin ^2x+8}}$$
The graph
The answer [src]
                                                             3      
  3*log(1 - sin(1))   3*log(1 + sin(1))     -5*sin(1) + 3*sin (1)   
- ----------------- + ----------------- - --------------------------
          16                  16                    2           4   
                                          8 - 16*sin (1) + 8*sin (1)
$${{3\,\log \left(\sin 1+1\right)}\over{16}}-{{3\,\log \left(1-\sin 1 \right)}\over{16}}-{{3\,\sin ^31}\over{8\,\sin ^41-16\,\sin ^21+8}}+ {{5\,\sin 1}\over{8\,\sin ^41-16\,\sin ^21+8}}$$
=
=
                                                             3      
  3*log(1 - sin(1))   3*log(1 + sin(1))     -5*sin(1) + 3*sin (1)   
- ----------------- + ----------------- - --------------------------
          16                  16                    2           4   
                                          8 - 16*sin (1) + 8*sin (1)
$$\frac{3 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{16} - \frac{3 \log{\left(1 - \sin{\left(1 \right)} \right)}}{16} - \frac{- 5 \sin{\left(1 \right)} + 3 \sin^{3}{\left(1 \right)}}{- 16 \sin^{2}{\left(1 \right)} + 8 \sin^{4}{\left(1 \right)} + 8}$$
Numerical answer [src]
4.00924253004203
4.00924253004203
The graph
Integral of sec^5(x) dx

    Use the examples entering the upper and lower limits of integration.