Mister Exam

Other calculators


pi((sqtrx+2)-(2x+1))^2

Integral of pi((sqtrx+2)-(2x+1))^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |                            2   
 |     /  ___                \    
 |  pi*\\/ x  + 2 - (2*x + 1)/  dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \pi \left(\sqrt{x} - \left(2 x + 1\right) + 2\right)^{2}\, dx$$
Integral(pi*(sqrt(x) + 2 - (2*x + 1))^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                           
 |                                                                            
 |                           2             /       5/2      2      3      3/2\
 |    /  ___                \              |    8*x      3*x    4*x    4*x   |
 | pi*\\/ x  + 2 - (2*x + 1)/  dx = C + pi*|x - ------ - ---- + ---- + ------|
 |                                         \      5       2      3       3   /
/                                                                             
$$\int \pi \left(\sqrt{x} - \left(2 x + 1\right) + 2\right)^{2}\, dx = C + \pi \left(- \frac{8 x^{\frac{5}{2}}}{5} + \frac{4 x^{\frac{3}{2}}}{3} + \frac{4 x^{3}}{3} - \frac{3 x^{2}}{2} + x\right)$$
The graph
The answer [src]
17*pi
-----
  30 
$$\frac{17 \pi}{30}$$
=
=
17*pi
-----
  30 
$$\frac{17 \pi}{30}$$
Numerical answer [src]
1.78023583703422
1.78023583703422
The graph
Integral of pi((sqtrx+2)-(2x+1))^2 dx

    Use the examples entering the upper and lower limits of integration.