0 / | | (pi + 2*x)*cos(n*x) dx | / -pi
Integral((pi + 2*x)*cos(n*x), (x, -pi, 0))
// 2 \
|| x |
|| -- for n = 0|
|| 2 |
/ || | // x for n = 0\ // x for n = 0\
| ||/-cos(n*x) | || | || |
| (pi + 2*x)*cos(n*x) dx = C - 2*|<|---------- for n != 0 | + pi*|
/2 2*cos(pi*n) pi*sin(pi*n) |-- - ----------- - ------------ for And(n > -oo, n < oo, n != 0) | 2 2 n
=
/2 2*cos(pi*n) pi*sin(pi*n) |-- - ----------- - ------------ for And(n > -oo, n < oo, n != 0) | 2 2 n
Piecewise((2/n^2 - 2*cos(pi*n)/n^2 - pi*sin(pi*n)/n, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.