Mister Exam

Other calculators

Integral of 1\2*log(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     /     2\   
 |  log\1 + x /   
 |  ----------- dx
 |       2        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(x^{2} + 1 \right)}}{2}\, dx$$
Integral(log(1 + x^2)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of a constant is the constant times the variable of integration:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

            PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

          So, the result is:

        The result is:

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                                 
 |    /     2\                   /     2\          
 | log\1 + x /              x*log\1 + x /          
 | ----------- dx = C - x + ------------- + atan(x)
 |      2                         2                
 |                                                 
/                                                  
$$\int \frac{\log{\left(x^{2} + 1 \right)}}{2}\, dx = C + \frac{x \log{\left(x^{2} + 1 \right)}}{2} - x + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
     log(2)   pi
-1 + ------ + --
       2      4 
$$-1 + \frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
=
=
     log(2)   pi
-1 + ------ + --
       2      4 
$$-1 + \frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
-1 + log(2)/2 + pi/4
Numerical answer [src]
0.131971753677421
0.131971753677421

    Use the examples entering the upper and lower limits of integration.