Mister Exam

Other calculators

Integral of 1+sqrt(abs(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  /      _____\   
 |  \1 + \/ |x| / dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \left(\sqrt{\left|{x}\right|} + 1\right)\, dx$$
Integral(1 + sqrt(|x|), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             /          
 |                             |           
 | /      _____\               |   _____   
 | \1 + \/ |x| / dx = C + x +  | \/ |x|  dx
 |                             |           
/                             /            
$$\int \left(\sqrt{\left|{x}\right|} + 1\right)\, dx = C + x + \int \sqrt{\left|{x}\right|}\, dx$$
The answer [src]
5/3
$$\frac{5}{3}$$
=
=
5/3
$$\frac{5}{3}$$
Numerical answer [src]
1.66666666666667
1.66666666666667

    Use the examples entering the upper and lower limits of integration.