Mister Exam

Other calculators

Integral of √(1+sinx)²+(cos²x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -pi                               
 ----                              
  2                                
   /                               
  |                                
  |  /              2          \   
  |  |  ____________       2   |   
  |  \\/ 1 + sin(x)   + cos (x)/ dx
  |                                
 /                                 
 pi                                
 --                                
 2                                 
$$\int\limits_{\frac{\pi}{2}}^{- \frac{\pi}{2}} \left(\left(\sqrt{\sin{\left(x \right)} + 1}\right)^{2} + \cos^{2}{\left(x \right)}\right)\, dx$$
Integral((sqrt(1 + sin(x)))^2 + cos(x)^2, (x, pi/2, -pi/2))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                             
 | /              2          \                                 
 | |  ____________       2   |                   sin(2*x)   3*x
 | \\/ 1 + sin(x)   + cos (x)/ dx = C - cos(x) + -------- + ---
 |                                                  4        2 
/                                                              
$$\int \left(\left(\sqrt{\sin{\left(x \right)} + 1}\right)^{2} + \cos^{2}{\left(x \right)}\right)\, dx = C + \frac{3 x}{2} + \frac{\sin{\left(2 x \right)}}{4} - \cos{\left(x \right)}$$
The graph
The answer [src]
-3*pi
-----
  2  
$$- \frac{3 \pi}{2}$$
=
=
-3*pi
-----
  2  
$$- \frac{3 \pi}{2}$$
-3*pi/2
Numerical answer [src]
-4.71238898038469
-4.71238898038469

    Use the examples entering the upper and lower limits of integration.