Mister Exam

Other calculators


(1+3t)t^2dt

Integral of (1+3t)t^2dt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |             2   
 |  (1 + 3*t)*t  dt
 |                 
/                  
0                  
$$\int\limits_{0}^{1} t^{2} \left(3 t + 1\right)\, dt$$
Integral((1 + 3*t)*t^2, (t, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                        3      4
 |            2          t    3*t 
 | (1 + 3*t)*t  dt = C + -- + ----
 |                       3     4  
/                                 
$$\int t^{2} \left(3 t + 1\right)\, dt = C + \frac{3 t^{4}}{4} + \frac{t^{3}}{3}$$
The graph
The answer [src]
13
--
12
$$\frac{13}{12}$$
=
=
13
--
12
$$\frac{13}{12}$$
13/12
Numerical answer [src]
1.08333333333333
1.08333333333333
The graph
Integral of (1+3t)t^2dt dx

    Use the examples entering the upper and lower limits of integration.