Mister Exam

Other calculators


(1-y^2)^1/2

Integral of (1-y^2)^1/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     ________   
 |    /      2    
 |  \/  1 - y   dy
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{1 - y^{2}}\, dy$$
Integral(sqrt(1 - y^2), (y, 0, 1))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=(y > -1) & (y < 1), context=sqrt(1 - y**2), symbol=y)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                       
 |                                                                        
 |    ________          //               ________                        \
 |   /      2           ||              /      2                         |
 | \/  1 - y   dy = C + | -1, y < 1)|
/                       \\   2            2                              /
$$\int \sqrt{1 - y^{2}}\, dy = C + \begin{cases} \frac{y \sqrt{1 - y^{2}}}{2} + \frac{\operatorname{asin}{\left(y \right)}}{2} & \text{for}\: y > -1 \wedge y < 1 \end{cases}$$
The graph
The answer [src]
pi
--
4 
$$\frac{\pi}{4}$$
=
=
pi
--
4 
$$\frac{\pi}{4}$$
pi/4
Numerical answer [src]
0.785398163397448
0.785398163397448
The graph
Integral of (1-y^2)^1/2 dx

    Use the examples entering the upper and lower limits of integration.