1 / | | 1 | ----------- dx | 10 | (1 - 2*x) | / 0
Integral((1 - 2*x)^(-10), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Rewrite the integrand:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 1 1 | ----------- dx = C + ------------- | 10 9 | (1 - 2*x) 18*(1 - 2*x) | /
Use the examples entering the upper and lower limits of integration.