Mister Exam

Other calculators

Integral of (1-sqrt(y-2))^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 11                    
  /                    
 |                     
 |                 2   
 |  /      _______\    
 |  \1 - \/ y - 2 /  dy
 |                     
/                      
0                      
$$\int\limits_{0}^{11} \left(1 - \sqrt{y - 2}\right)^{2}\, dy$$
Integral((1 - sqrt(y - 2))^2, (y, 0, 11))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 |                2                          2            3/2
 | /      _______\                    (y - 2)    4*(y - 2)   
 | \1 - \/ y - 2 /  dy = -2 + C + y + -------- - ------------
 |                                       2            3      
/                                                            
$$\int \left(1 - \sqrt{y - 2}\right)^{2}\, dy = C + y - \frac{4 \left(y - 2\right)^{\frac{3}{2}}}{3} + \frac{\left(y - 2\right)^{2}}{2} - 2$$
The graph
The answer [src]
           ___
27   8*I*\/ 2 
-- - ---------
2        3    
$$\frac{27}{2} - \frac{8 \sqrt{2} i}{3}$$
=
=
           ___
27   8*I*\/ 2 
-- - ---------
2        3    
$$\frac{27}{2} - \frac{8 \sqrt{2} i}{3}$$
27/2 - 8*i*sqrt(2)/3
Numerical answer [src]
(13.4981345648734 - 3.77549353205414j)
(13.4981345648734 - 3.77549353205414j)

    Use the examples entering the upper and lower limits of integration.