Mister Exam

Other calculators

Integral of (1-sqrt(y))/2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |        ___   
 |  1 - \/ y    
 |  --------- dy
 |      2       
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1 - \sqrt{y}}{2}\, dy$$
Integral((1 - sqrt(y))/2, (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                            
 |       ___               3/2
 | 1 - \/ y           y   y   
 | --------- dy = C + - - ----
 |     2              2    3  
 |                            
/                             
$$\int \frac{1 - \sqrt{y}}{2}\, dy = C - \frac{y^{\frac{3}{2}}}{3} + \frac{y}{2}$$
The graph
The answer [src]
1/6
$$\frac{1}{6}$$
=
=
1/6
$$\frac{1}{6}$$
1/6
Numerical answer [src]
0.166666666666667
0.166666666666667

    Use the examples entering the upper and lower limits of integration.