Mister Exam

Other calculators

Integral of 1-sin^2x/1-cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |  /       2              \   
 |  |    sin (x)           |   
 |  |1 - ------- - cos(2*x)| dx
 |  \       1              /   
 |                             
/                              
0                              
$$\int\limits_{0}^{1} \left(\left(- \frac{\sin^{2}{\left(x \right)}}{1} + 1\right) - \cos{\left(2 x \right)}\right)\, dx$$
Integral(1 - sin(x)^2/1 - cos(2*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          The result is:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 | /       2              \                      
 | |    sin (x)           |          x   sin(2*x)
 | |1 - ------- - cos(2*x)| dx = C + - - --------
 | \       1              /          2      4    
 |                                               
/                                                
$$\int \left(\left(- \frac{\sin^{2}{\left(x \right)}}{1} + 1\right) - \cos{\left(2 x \right)}\right)\, dx = C + \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}$$
The graph
The answer [src]
1   sin(2)   cos(1)*sin(1)
- - ------ + -------------
2     2            2      
$$- \frac{\sin{\left(2 \right)}}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
=
=
1   sin(2)   cos(1)*sin(1)
- - ------ + -------------
2     2            2      
$$- \frac{\sin{\left(2 \right)}}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
1/2 - sin(2)/2 + cos(1)*sin(1)/2
Numerical answer [src]
0.27267564329358
0.27267564329358

    Use the examples entering the upper and lower limits of integration.