Mister Exam

Other calculators

Integral of √((1-cosx)/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*POST_GRBEK_SMALL_pi                   
           /                             
          |                              
          |               ____________   
          |              / 1 - cos(x)    
          |             /  ----------  dx
          |           \/       2         
          |                              
         /                               
         0                               
$$\int\limits_{0}^{2 POST_{GRBEK SMALL \pi}} \sqrt{\frac{1 - \cos{\left(x \right)}}{2}}\, dx$$
Integral(sqrt(1 - cos(x)/2), (x, 0, 2*POST_GRBEK_SMALL_pi))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                     /                 
                                    |                  
  /                            ___  |   ____________   
 |                           \/ 2 * | \/ 1 - cos(x)  dx
 |     ____________                 |                  
 |    / 1 - cos(x)                 /                   
 |   /  ----------  dx = C + --------------------------
 | \/       2                            2             
 |                                                     
/                                                      
$$\int \sqrt{\frac{1 - \cos{\left(x \right)}}{2}}\, dx = C + \frac{\sqrt{2} \int \sqrt{1 - \cos{\left(x \right)}}\, dx}{2}$$
The answer [src]
       2*POST_GRBEK_SMALL_pi                 
                 /                           
                |                            
  ___           |             ____________   
\/ 2 *          |           \/ 1 - cos(x)  dx
                |                            
               /                             
               0                             
---------------------------------------------
                      2                      
$$\frac{\sqrt{2} \int\limits_{0}^{2 POST_{GRBEK SMALL \pi}} \sqrt{1 - \cos{\left(x \right)}}\, dx}{2}$$
=
=
       2*POST_GRBEK_SMALL_pi                 
                 /                           
                |                            
  ___           |             ____________   
\/ 2 *          |           \/ 1 - cos(x)  dx
                |                            
               /                             
               0                             
---------------------------------------------
                      2                      
$$\frac{\sqrt{2} \int\limits_{0}^{2 POST_{GRBEK SMALL \pi}} \sqrt{1 - \cos{\left(x \right)}}\, dx}{2}$$

    Use the examples entering the upper and lower limits of integration.