Mister Exam

Other calculators

Integral of (1-cos3x+2sin-x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                 
  /                                 
 |                                  
 |  (1 - cos(3*x) + 2*sin(x) - x) dx
 |                                  
/                                   
0                                   
$$\int\limits_{0}^{1} \left(- x + \left(\left(1 - \cos{\left(3 x \right)}\right) + 2 \sin{\left(x \right)}\right)\right)\, dx$$
Integral(1 - cos(3*x) + 2*sin(x) - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        The result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       2           
 |                                                       x    sin(3*x)
 | (1 - cos(3*x) + 2*sin(x) - x) dx = C + x - 2*cos(x) - -- - --------
 |                                                       2       3    
/                                                                     
$$\int \left(- x + \left(\left(1 - \cos{\left(3 x \right)}\right) + 2 \sin{\left(x \right)}\right)\right)\, dx = C - \frac{x^{2}}{2} + x - \frac{\sin{\left(3 x \right)}}{3} - 2 \cos{\left(x \right)}$$
The graph
The answer [src]
5              sin(3)
- - 2*cos(1) - ------
2                3   
$$- 2 \cos{\left(1 \right)} - \frac{\sin{\left(3 \right)}}{3} + \frac{5}{2}$$
=
=
5              sin(3)
- - 2*cos(1) - ------
2                3   
$$- 2 \cos{\left(1 \right)} - \frac{\sin{\left(3 \right)}}{3} + \frac{5}{2}$$
5/2 - 2*cos(1) - sin(3)/3
Numerical answer [src]
1.3723553855771
1.3723553855771

    Use the examples entering the upper and lower limits of integration.