Mister Exam

积分 1-cos(2y) dx

积分限:

v

图像:

分段定义:

解答

You have entered [src]
 cos(y)                 
    /                   
   |                    
   |   (1 - cos(2*y)) dy
   |                    
  /                     
  0                     
$$\int\limits_{0}^{\cos{\left(y \right)}} \left(1 - \cos{\left(2 y \right)}\right)\, dy$$
Integral(1 - cos(2*y), (y, 0, cos(y)))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                             sin(2*y)
 | (1 - cos(2*y)) dy = C + y - --------
 |                                2    
/                                      
$$\int \left(1 - \cos{\left(2 y \right)}\right)\, dy = C + y - \frac{\sin{\left(2 y \right)}}{2}$$
The answer [src]
  sin(2*cos(y))         
- ------------- + cos(y)
        2               
$$- \frac{\sin{\left(2 \cos{\left(y \right)} \right)}}{2} + \cos{\left(y \right)}$$
=
=
  sin(2*cos(y))         
- ------------- + cos(y)
        2               
$$- \frac{\sin{\left(2 \cos{\left(y \right)} \right)}}{2} + \cos{\left(y \right)}$$
-sin(2*cos(y))/2 + cos(y)

    这些示例也可用于输入定积分的上下限.