Mister Exam

Other calculators

Integral of √100-x^2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /  _____    2  \   
 |  \\/ 100  - x *1/ dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(- 1 x^{2} + \sqrt{100}\right)\, dx$$
Integral(sqrt(100) - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                   3
 | /  _____    2  \                 x 
 | \\/ 100  - x *1/ dx = C + 10*x - --
 |                                  3 
/                                     
$$\int \left(- 1 x^{2} + \sqrt{100}\right)\, dx = C - \frac{x^{3}}{3} + 10 x$$
The answer [src]
29/3
$${{29}\over{3}}$$
=
=
29/3
$$\frac{29}{3}$$
Numerical answer [src]
9.66666666666667
9.66666666666667

    Use the examples entering the upper and lower limits of integration.