Mister Exam

Other calculators

Integral of (1/xln^3x)^-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo             
  /             
 |              
 |      1       
 |  --------- dx
 |  /   3   \   
 |  |log (x)|   
 |  |-------|   
 |  \   x   /   
 |              
/               
E               
$$\int\limits_{e}^{\infty} \frac{1}{\frac{1}{x} \log{\left(x \right)}^{3}}\, dx$$
Integral(1/(log(x)^3/x), (x, E, oo))
The answer (Indefinite) [src]
  /                                                      
 |                                        2      2       
 |     1                               - x  - 2*x *log(x)
 | --------- dx = C + 2*Ei(2*log(x)) + ------------------
 | /   3   \                                    2        
 | |log (x)|                               2*log (x)     
 | |-------|                                             
 | \   x   /                                             
 |                                                       
/                                                        
$$\int \frac{1}{\frac{1}{x} \log{\left(x \right)}^{3}}\, dx = C + \frac{- 2 x^{2} \log{\left(x \right)} - x^{2}}{2 \log{\left(x \right)}^{2}} + 2 \operatorname{Ei}{\left(2 \log{\left(x \right)} \right)}$$
The graph
The answer [src]
oo - 2*Ei(2)
$$- 2 \operatorname{Ei}{\left(2 \right)} + \infty$$
=
=
oo - 2*Ei(2)
$$- 2 \operatorname{Ei}{\left(2 \right)} + \infty$$
oo - 2*Ei(2)

    Use the examples entering the upper and lower limits of integration.