Mister Exam

Other calculators


1/(x^2sqrt(1+x^2))
  • How to use it?

  • Integral of d{x}:
  • Integral of e^(2x) Integral of e^(2x)
  • Integral of cos Integral of cos
  • Integral of x*ln(x) Integral of x*ln(x)
  • Integral of cos^2x Integral of cos^2x
  • Identical expressions

  • one /(x^ two sqrt(one +x^2))
  • 1 divide by (x squared square root of (1 plus x squared ))
  • one divide by (x to the power of two square root of (one plus x squared ))
  • 1/(x^2√(1+x^2))
  • 1/(x2sqrt(1+x2))
  • 1/x2sqrt1+x2
  • 1/(x²sqrt(1+x²))
  • 1/(x to the power of 2sqrt(1+x to the power of 2))
  • 1/x^2sqrt1+x^2
  • 1 divide by (x^2sqrt(1+x^2))
  • 1/(x^2sqrt(1+x^2))dx
  • Similar expressions

  • 1/(x^2sqrt(1-x^2))

Integral of 1/(x^2sqrt(1+x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |          1          
 |  1*-------------- dx
 |          ________   
 |     2   /      2    
 |    x *\/  1 + x     
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x^{2} \sqrt{x^{2} + 1}}\, dx$$
Detail solution

    TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)/sin(_theta)**2, substep=URule(u_var=_u, u_func=sin(_theta), constant=1, substep=PowerRule(base=_u, exp=-2, context=_u**(-2), symbol=_u), context=cos(_theta)/sin(_theta)**2, symbol=_theta), restriction=True, context=1/(x**2*sqrt(x**2 + 1)), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             ________
 |                             /      2 
 |         1                 \/  1 + x  
 | 1*-------------- dx = C - -----------
 |         ________               x     
 |    2   /      2                      
 |   x *\/  1 + x                       
 |                                      
/                                       
$$-{{\sqrt{x^2+1}}\over{x}}$$
The graph
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
1.3793236779486e+19
1.3793236779486e+19
The graph
Integral of 1/(x^2sqrt(1+x^2)) dx

    Use the examples entering the upper and lower limits of integration.