Mister Exam

Other calculators


1/(x^2+5x+6)

Integral of 1/(x^2+5x+6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |         1         
 |  1*------------ dx
 |     2             
 |    x  + 5*x + 6   
 |                   
/                    
0                    
0111x2+5x+6dx\int\limits_{0}^{1} 1 \cdot \frac{1}{x^{2} + 5 x + 6}\, dx
Integral(1/(x^2 + 5*x + 6), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    11x2+5x+6=1x+3+1x+21 \cdot \frac{1}{x^{2} + 5 x + 6} = - \frac{1}{x + 3} + \frac{1}{x + 2}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1x+3)dx=1x+3dx\int \left(- \frac{1}{x + 3}\right)\, dx = - \int \frac{1}{x + 3}\, dx

      1. Let u=x+3u = x + 3.

        Then let du=dxdu = dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(x+3)\log{\left(x + 3 \right)}

      So, the result is: log(x+3)- \log{\left(x + 3 \right)}

    1. Let u=x+2u = x + 2.

      Then let du=dxdu = dx and substitute dudu:

      1udu\int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      Now substitute uu back in:

      log(x+2)\log{\left(x + 2 \right)}

    The result is: log(x+2)log(x+3)\log{\left(x + 2 \right)} - \log{\left(x + 3 \right)}

  3. Add the constant of integration:

    log(x+2)log(x+3)+constant\log{\left(x + 2 \right)} - \log{\left(x + 3 \right)}+ \mathrm{constant}


The answer is:

log(x+2)log(x+3)+constant\log{\left(x + 2 \right)} - \log{\left(x + 3 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               
 |                                                
 |        1                                       
 | 1*------------ dx = C - log(3 + x) + log(2 + x)
 |    2                                           
 |   x  + 5*x + 6                                 
 |                                                
/                                                 
log(x+2)log(x+3)\log \left(x+2\right)-\log \left(x+3\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
-log(2) - log(4) + 2*log(3)
log4+2log3log2-\log 4+2\,\log 3-\log 2
=
=
-log(2) - log(4) + 2*log(3)
log(4)log(2)+2log(3)- \log{\left(4 \right)} - \log{\left(2 \right)} + 2 \log{\left(3 \right)}
Numerical answer [src]
0.117783035656383
0.117783035656383
The graph
Integral of 1/(x^2+5x+6) dx

    Use the examples entering the upper and lower limits of integration.