Integral of 1/(x^2+5x+6) dx
The solution
Detail solution
-
Rewrite the integrand:
1⋅x2+5x+61=−x+31+x+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+31)dx=−∫x+31dx
-
Let u=x+3.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+3)
So, the result is: −log(x+3)
-
Let u=x+2.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+2)
The result is: log(x+2)−log(x+3)
-
Add the constant of integration:
log(x+2)−log(x+3)+constant
The answer is:
log(x+2)−log(x+3)+constant
The answer (Indefinite)
[src]
/
|
| 1
| 1*------------ dx = C - log(3 + x) + log(2 + x)
| 2
| x + 5*x + 6
|
/
log(x+2)−log(x+3)
The graph
-log(2) - log(4) + 2*log(3)
−log4+2log3−log2
=
-log(2) - log(4) + 2*log(3)
−log(4)−log(2)+2log(3)
Use the examples entering the upper and lower limits of integration.