Mister Exam

Other calculators


1/(x^2+5x+6)

Integral of 1/(x^2+5x+6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |         1         
 |  1*------------ dx
 |     2             
 |    x  + 5*x + 6   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x^{2} + 5 x + 6}\, dx$$
Integral(1/(x^2 + 5*x + 6), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                                
 |        1                                       
 | 1*------------ dx = C - log(3 + x) + log(2 + x)
 |    2                                           
 |   x  + 5*x + 6                                 
 |                                                
/                                                 
$$\log \left(x+2\right)-\log \left(x+3\right)$$
The graph
The answer [src]
-log(2) - log(4) + 2*log(3)
$$-\log 4+2\,\log 3-\log 2$$
=
=
-log(2) - log(4) + 2*log(3)
$$- \log{\left(4 \right)} - \log{\left(2 \right)} + 2 \log{\left(3 \right)}$$
Numerical answer [src]
0.117783035656383
0.117783035656383
The graph
Integral of 1/(x^2+5x+6) dx

    Use the examples entering the upper and lower limits of integration.