Mister Exam

Other calculators

Integral of 1/(x^2+10x+26) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |   2               
 |  x  + 10*x + 26   
 |                   
/                    
-oo                  
$$\int\limits_{-\infty}^{0} \frac{1}{\left(x^{2} + 10 x\right) + 26}\, dx$$
Integral(1/(x^2 + 10*x + 26), (x, -oo, 0))
Detail solution
We have the integral:
  /                 
 |                  
 |       1          
 | -------------- dx
 |  2               
 | x  + 10*x + 26   
 |                  
/                   
Rewrite the integrand
      1                  1        
-------------- = -----------------
 2                 /        2    \
x  + 10*x + 26   1*\(-x - 5)  + 1/
or
  /                   
 |                    
 |       1            
 | -------------- dx  
 |  2                =
 | x  + 10*x + 26     
 |                    
/                     
  
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x - 5)  + 1   
 |                 
/                  
In the integral
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x - 5)  + 1   
 |                 
/                  
do replacement
v = -5 - x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                              
 |                               
 |       1                       
 | ------------- dx = atan(5 + x)
 |         2                     
 | (-x - 5)  + 1                 
 |                               
/                                
Solution is:
C + atan(5 + x)
The answer (Indefinite) [src]
  /                                   
 |                                    
 |       1                            
 | -------------- dx = C + atan(5 + x)
 |  2                                 
 | x  + 10*x + 26                     
 |                                    
/                                     
$$\int \frac{1}{\left(x^{2} + 10 x\right) + 26}\, dx = C + \operatorname{atan}{\left(x + 5 \right)}$$
The graph
The answer [src]
pi          
-- + atan(5)
2           
$$\operatorname{atan}{\left(5 \right)} + \frac{\pi}{2}$$
=
=
pi          
-- + atan(5)
2           
$$\operatorname{atan}{\left(5 \right)} + \frac{\pi}{2}$$
pi/2 + atan(5)

    Use the examples entering the upper and lower limits of integration.