Mister Exam

Other calculators

Integral of 1/(√(x^2-4*x+8)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /  2              
 |  \/  x  - 4*x + 8    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\left(x^{2} - 4 x\right) + 8}}\, dx$$
Integral(1/(sqrt(x^2 - 4*x + 8)), (x, 0, 1))
The answer [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  8 + x  - 4*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x^{2} - 4 x + 8}}\, dx$$
=
=
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  8 + x  - 4*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x^{2} - 4 x + 8}}\, dx$$
Integral(1/sqrt(8 + x^2 - 4*x), (x, 0, 1))
Numerical answer [src]
0.40016176195994
0.40016176195994

    Use the examples entering the upper and lower limits of integration.