Mister Exam

Other calculators

Integral of 1/(x^2-9x+20) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 10                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |   2              
 |  x  - 9*x + 20   
 |                  
/                   
6                   
$$\int\limits_{6}^{10} \frac{1}{\left(x^{2} - 9 x\right) + 20}\, dx$$
Integral(1/(x^2 - 9*x + 20), (x, 6, 10))
The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |       1                                              
 | ------------- dx = C - log(-8 + 2*x) + log(-10 + 2*x)
 |  2                                                   
 | x  - 9*x + 20                                        
 |                                                      
/                                                       
$$\int \frac{1}{\left(x^{2} - 9 x\right) + 20}\, dx = C + \log{\left(2 x - 10 \right)} - \log{\left(2 x - 8 \right)}$$
The graph
The answer [src]
-log(6) + log(2) + log(5)
$$- \log{\left(6 \right)} + \log{\left(2 \right)} + \log{\left(5 \right)}$$
=
=
-log(6) + log(2) + log(5)
$$- \log{\left(6 \right)} + \log{\left(2 \right)} + \log{\left(5 \right)}$$
-log(6) + log(2) + log(5)
Numerical answer [src]
0.510825623765991
0.510825623765991

    Use the examples entering the upper and lower limits of integration.