Mister Exam

Other calculators

Integral of (1/x^1/2)+sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
  /                    
 |                     
 |  /  1           \   
 |  |----- + sin(x)| dx
 |  |  ___         |   
 |  \\/ x          /   
 |                     
/                      
0                      
$$\int\limits_{0}^{\pi} \left(\sin{\left(x \right)} + \frac{1}{\sqrt{x}}\right)\, dx$$
Integral(1/(sqrt(x)) + sin(x), (x, 0, pi))
Detail solution
  1. Integrate term-by-term:

    1. The integral of sine is negative cosine:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 | /  1           \                       ___
 | |----- + sin(x)| dx = C - cos(x) + 2*\/ x 
 | |  ___         |                          
 | \\/ x          /                          
 |                                           
/                                            
$$\int \left(\sin{\left(x \right)} + \frac{1}{\sqrt{x}}\right)\, dx = C + 2 \sqrt{x} - \cos{\left(x \right)}$$
The graph
The answer [src]
        ____
2 + 2*\/ pi 
$$2 + 2 \sqrt{\pi}$$
=
=
        ____
2 + 2*\/ pi 
$$2 + 2 \sqrt{\pi}$$
2 + 2*sqrt(pi)
Numerical answer [src]
5.54490770087063
5.54490770087063

    Use the examples entering the upper and lower limits of integration.