Integral of 1/(xsqrt(x^2-9)) dx
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=3*sec(_theta), rewritten=1/3, substep=ConstantRule(constant=1/3, context=1/3, symbol=_theta), restriction=(x > -3) & (x < 3), context=1/(x*sqrt(x**2 - 9)), symbol=x)
-
Add the constant of integration:
{3acos(x3)forx>−3∧x<3+constant
The answer is:
{3acos(x3)forx>−3∧x<3+constant
The graph
I*acosh(3)
-oo*I + ----------
3
−∞i+3iacosh(3)
=
I*acosh(3)
-oo*I + ----------
3
−∞i+3iacosh(3)
(0.0 - 14.7064861430606j)
(0.0 - 14.7064861430606j)
Use the examples entering the upper and lower limits of integration.