Integral of 1/x(sqrt(x+3)) dx
The solution
The answer (Indefinite)
[src]
// / ___ _______\ \
|| ___ |\/ 3 *\/ 3 + x | |
/ ||-\/ 3 *acoth|---------------| |
| || \ 3 / |
| _______ ||------------------------------ for 3 + x > 3|
| \/ x + 3 _______ || 3 |
| --------- dx = C + 2*\/ 3 + x + 6*|< |
| x || / ___ _______\ |
| || ___ |\/ 3 *\/ 3 + x | |
/ ||-\/ 3 *atanh|---------------| |
|| \ 3 / |
||------------------------------ for 3 + x < 3|
\\ 3 /
∫xx+3dx=C+2x+3+6⎩⎨⎧−33acoth(33x+3)−33atanh(33x+3)forx+3>3forx+3<3
The graph
/ ___\
___ |2*\/ 3 |
oo - 2*\/ 3 *acoth|-------|
\ 3 /
−23acoth(323)+∞
=
/ ___\
___ |2*\/ 3 |
oo - 2*\/ 3 *acoth|-------|
\ 3 /
−23acoth(323)+∞
oo - 2*sqrt(3)*acoth(2*sqrt(3)/3)
Use the examples entering the upper and lower limits of integration.