Mister Exam

Other calculators

Integral of 1/(x(sqrt(1+(sqrtx)))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |       ___________   
 |      /       ___    
 |  x*\/  1 + \/ x     
 |                     
/                      
2                      
$$\int\limits_{2}^{1} \frac{1}{x \sqrt{\sqrt{x} + 1}}\, dx$$
Integral(1/(x*sqrt(1 + sqrt(x))), (x, 2, 1))
The answer (Indefinite) [src]
  /                                        
 |                                         
 |        1                         /  1  \
 | ---------------- dx = C - 4*asinh|-----|
 |      ___________                 |4 ___|
 |     /       ___                  \\/ x /
 | x*\/  1 + \/ x                          
 |                                         
/                                          
$$\int \frac{1}{x \sqrt{\sqrt{x} + 1}}\, dx = C - 4 \operatorname{asinh}{\left(\frac{1}{\sqrt[4]{x}} \right)}$$
The graph
The answer [src]
                            / 3/4\
       /      ___\          |2   |
- 4*log\1 + \/ 2 / + 4*asinh|----|
                            \ 2  /
$$- 4 \log{\left(1 + \sqrt{2} \right)} + 4 \operatorname{asinh}{\left(\frac{2^{\frac{3}{4}}}{2} \right)}$$
=
=
                            / 3/4\
       /      ___\          |2   |
- 4*log\1 + \/ 2 / + 4*asinh|----|
                            \ 2  /
$$- 4 \log{\left(1 + \sqrt{2} \right)} + 4 \operatorname{asinh}{\left(\frac{2^{\frac{3}{4}}}{2} \right)}$$
-4*log(1 + sqrt(2)) + 4*asinh(2^(3/4)/2)
Numerical answer [src]
-0.468352509116176
-0.468352509116176

    Use the examples entering the upper and lower limits of integration.