Mister Exam

Other calculators

Integral of 1/xsqrt(1+lnx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 + log(x)    
 |  -------------- dx
 |        x          
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\sqrt{\log{\left(x \right)} + 1}}{x}\, dx$$
Integral(sqrt(1 + log(x))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 |   ____________                        3/2
 | \/ 1 + log(x)           2*(1 + log(x))   
 | -------------- dx = C + -----------------
 |       x                         3        
 |                                          
/                                           
$$\int \frac{\sqrt{\log{\left(x \right)} + 1}}{x}\, dx = C + \frac{2 \left(\log{\left(x \right)} + 1\right)^{\frac{3}{2}}}{3}$$
The answer [src]
2/3 + oo*I
$$\frac{2}{3} + \infty i$$
=
=
2/3 + oo*I
$$\frac{2}{3} + \infty i$$
2/3 + oo*i
Numerical answer [src]
(0.665612918681675 + 188.571427310572j)
(0.665612918681675 + 188.571427310572j)

    Use the examples entering the upper and lower limits of integration.