1 / | | ____________ | \/ 1 + log(x) | -------------- dx | x | / 0
Integral(sqrt(1 + log(x))/x, (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | ____________ 3/2 | \/ 1 + log(x) 2*(1 + log(x)) | -------------- dx = C + ----------------- | x 3 | /
2/3 + oo*I
=
2/3 + oo*I
2/3 + oo*i
(0.665612918681675 + 188.571427310572j)
(0.665612918681675 + 188.571427310572j)
Use the examples entering the upper and lower limits of integration.