Mister Exam

Other calculators

Integral of 1/(x+y+z+1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x + y                   
   /                     
  |                      
  |          1           
  |   ---------------- dx
  |                  3   
  |   (x + y + z + 1)    
  |                      
 /                       
 0                       
$$\int\limits_{0}^{x + y} \frac{1}{\left(\left(z + \left(x + y\right)\right) + 1\right)^{3}}\, dx$$
Integral(1/((x + y + z + 1)^3), (x, 0, x + y))
The answer [src]
                 1                                                        1                                     
----------------------------------- - --------------------------------------------------------------------------
       2      2                              2      2            2                                              
2 + 2*y  + 2*z  + 4*y + 4*z + 4*y*z   2 + 2*y  + 2*z  + 2*(x + y)  + 4*y + 4*z + (x + y)*(4 + 4*y + 4*z) + 4*y*z
$$- \frac{1}{2 y^{2} + 4 y z + 4 y + 2 z^{2} + 4 z + 2 \left(x + y\right)^{2} + \left(x + y\right) \left(4 y + 4 z + 4\right) + 2} + \frac{1}{2 y^{2} + 4 y z + 4 y + 2 z^{2} + 4 z + 2}$$
=
=
                 1                                                        1                                     
----------------------------------- - --------------------------------------------------------------------------
       2      2                              2      2            2                                              
2 + 2*y  + 2*z  + 4*y + 4*z + 4*y*z   2 + 2*y  + 2*z  + 2*(x + y)  + 4*y + 4*z + (x + y)*(4 + 4*y + 4*z) + 4*y*z
$$- \frac{1}{2 y^{2} + 4 y z + 4 y + 2 z^{2} + 4 z + 2 \left(x + y\right)^{2} + \left(x + y\right) \left(4 y + 4 z + 4\right) + 2} + \frac{1}{2 y^{2} + 4 y z + 4 y + 2 z^{2} + 4 z + 2}$$
1/(2 + 2*y^2 + 2*z^2 + 4*y + 4*z + 4*y*z) - 1/(2 + 2*y^2 + 2*z^2 + 2*(x + y)^2 + 4*y + 4*z + (x + y)*(4 + 4*y + 4*z) + 4*y*z)

    Use the examples entering the upper and lower limits of integration.